# **D86 Science Program Update**

**June 9, 2021** 

# D86 Science Departments: Collaboration with our School Board

The D86 Science Department Chairs and Teachers have a long history of collaborative engagement with our School Board. Our goal is to meet the needs of our students and our community, and much of our work has emerged from the communication and direction we have received from our school board leadership over the years.

As times change, the needs and interests of our students and community also change, and therefore so do the needs and interests of our school board. Our department members understand that to do our best work, we must engage in ongoing dialogue and change as well. Please reach out to us with your questions, concerns and ideas as you have them. We look forward to continuing to work together.

#### **AGENDA**

- 1. History of D86 Science Curriculum Alignment
- 2. Illinois State Science Standards
- 3. Development of the D86 Science Program
- 4. Program Updates and Future Work
- 5. Program Analysis

# History of D86 Science Program Alignment

### **History of D86 Science Curriculum Alignment**

| 2007-2015    | Development of Science Essential Curriculum (DuPage Regional Office of Education initiative) |
|--------------|----------------------------------------------------------------------------------------------|
| 2014         | Adoption of the Next Generation Science Standards (NGSS) as the Illinois Science Standards   |
| 2016-2018    | Development of D86 Guaranteed & Viable Curriculum (CEC) Summary                              |
| 2018-2019    | Civil Rights Complaint (including re: alignment between schools) New items 12                |
| 2018-Present | BOE adoption of <u>D86 Strategic Plan</u>                                                    |
|              | Dec 2018: BOE directive to D86 Chairs to propose provisional curriculum alignment plans      |
|              | March 2019: D86 Science Program Team initiated program sequence options                      |
|              | May 2019: Science sequence proposal presented to teachers, parents/students for feedback     |
|              | Fall 2019: Board/community presentations: October 2019, November 11 and 13,                  |
|              | <u>November 2019, January 23, 2020</u>                                                       |
|              | <u>FAQ</u> sheet                                                                             |

#### Hinsdale Central's Prior Program: Open Enrollment

"Open Enrollment" means that students at Hinsdale Central Science did not have a sequence for their science courses but could take them in any order based on meeting the prerequisites.

Some examples of four-year plans include, **but was not limited to:** 

| 9th grade     | 10th grade            | 11th grade | 12th grade    |  |
|---------------|-----------------------|------------|---------------|--|
| Earth Science | Biology               | Chemistry  | Physics       |  |
| Earth Science | Chemistry             | Physics    | AP Course     |  |
| Biology       | Chemistry             | Physics    | AP Course     |  |
| Biology       | Biology Earth Science |            | AP Course     |  |
| Chemistry     | Chemistry Physics     |            | Earth Science |  |
| Chemistry     | Earth Science         | Physics    | Biology       |  |

#### Hinsdale Central's Prior Program: Open Enrollment

| Benefits                                                                                                                                                                                     | Drawbacks                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Allowed families to have choice</li> <li>Provided flexibility based on student interest and needs</li> <li>Provided a robust earth science curriculum at multiple levels</li> </ul> | <ul> <li>Teachers and students did not have a vertically aligned sequence building upon skills or content from 9th to 11th grade</li> <li>Courses contained students of many grade levels within the same course, at differing levels of academic maturity</li> <li>Many students did not experience the four core content areas (NGSS)</li> <li>Students/parents experienced confusion on choosing the "right" courses</li> </ul> |

#### Hinsdale South's Prior Program: PCB Sequence

In Hinsdale South's prior program, implemented in 2008, students took a sequence of courses from 9th grade to 11th grade, with most AP and elective science courses offered in 11th and/or 12th grade.

| 9th grade    | 10th grade                    | 11th grade    | 12th grade       |
|--------------|-------------------------------|---------------|------------------|
| Geophysics   | Chemistry or Chemistry Honors | Biology       | AP Course/       |
| or Physics H |                               | or AP Biology | Science Elective |

# Hinsdale South's Prior Program: PCB Sequence

| Benefits                                                                                                                                                                                                                                                                                                                                                                                     | Drawbacks                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <ul> <li>Teachers and students experienced vertical aligned courses year-to-year in which skills and content could be built upon</li> <li>Decreased student/parent confusion on choosing the "right" courses</li> <li>All students, regardless of background, took the same core science courses at the same grade level (albeit at differing skill levels regular vs. honors/AP)</li> </ul> | - Earth science only integrated in regular level freshman course |

Hinsdale South implemented a version of PCB more than a decade ago, which has shown a positive impact on the number of students taking and passing AP science courses.

|                        | HSHS AP Scores<br>sequence (av |                                         |      | HSHS AP Scores during P-C-B sequence (avg 2015-2020) |
|------------------------|--------------------------------|-----------------------------------------|------|------------------------------------------------------|
| AP Chemistry (3/4/5s)  |                                | • • • • • • • • • • • • • • • • • • • • | 0000 |                                                      |
| <u>APES</u> (3/4/5s)   |                                | • • • •                                 | 0    |                                                      |
| AP Physics C (3/4/5s)  | •                              | • •                                     | 000  |                                                      |
| AP Biology<br>(3/4/5s) |                                |                                         | 000  |                                                      |

Hinsdale South implemented a version of PCB more than a decade ago, which has shown a positive impact on the number of students taking and passing AP science courses.

| HS                     | SHS AP Scores during sequence (avg 2005 |      | HSHS AP Scores during P-C-B sequence (avg 2015-2020) |
|------------------------|-----------------------------------------|------|------------------------------------------------------|
| AP Chemistry (3/4/5s)  |                                         | 000  |                                                      |
| <u>APES</u> (3/4/5s)   |                                         | 0    |                                                      |
| AP Physics C (3/4/5s)  |                                         | 000  |                                                      |
| AP Biology<br>(3/4/5s) |                                         | 0000 |                                                      |

#### **Illinois State Science Standards**

Illinois' current science standards became effective in February 2014 and are based on the Next Generation Science Standards (NGSS). Forty-one experts, including three Illinois educators, wrote the NGSS. State-level committees in 26 states reviewed the learning benchmarks. These groups confirmed that the design and development of the NGSS were guided by the best available evidence to ensure that students who meet these standards are prepared for postsecondary education and careers in the 21st century. The NGSS can be viewed at 23 Illinois Administrative Code 1 Appendix D &

#### The Next Generation Science Standards (NGSS)

The NGSS are K–12 science content standards that set the expectations for what students should know and be able to do in science in order to make sense of the world around them and be ready for college, careers, and citizenship.



#### About the NGSS

- The NGSS are for ALL students and provide a science education they can use in real life. A strong science education equips students with both an ability to make sense of the complex world around them and foundational skills that are necessary for all careers and life.
- The NGSS include the latest advances in science and research about how students best learn science. The NGSS are based on the National Research Council's 2012 document A Framework for K-12 Science Education, which provides updated science content and reflects current research about student learning.
- The NGSS were developed by states and their educators. Twenty-six lead states worked with a 40-member writing team composed of classroom teachers, working scientists, and education researchers to develop the standards. Each lead state assembled a team of educators, higher education faculty, scientists, and engineers to provide feedback on the draft standards. Additionally, two public review periods captured tens of thousands of comments during development that were used to revise each draft.

### **Next Generation Science Standards - Example**

| SCIENCE EDUCATION WILL INVOLVE LESS:                          | SCIENCE EDUCATION WILL INVOLVE MORE:                                                                                                               |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Rote memorization of facts and terminology                    | Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning. |
| Learning of ideas disconnected from questions about phenomena | Systems thinking and modeling to explain phenomena and to give a context for the ideas to be learned                                               |
| Teachers providing information to the whole class             | Students conducting investigations, solving problems, and engaging in discussions with teachers' guidance                                          |
| Teachers posing questions with only one right answer          | Students discussing open-ended questions that focus on the strength of the evidence used to generate claims                                        |

#### **Content Area Domains of the NGSS**

| PHYSICAL SCIENCE                                                                                  | LIFE SCIENCE                                                                                                                                                                | EARTH AND SPACE SCIENCES                                                                 |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| HS.Structure and Properties of Matter                                                             | HS.Structure and Function                                                                                                                                                   | HS.Space Systems                                                                         |
| HS.Chemical Reactions HS.Forces and Interactions HS.Energy HS.Waves and Electromagnetic Radiation | HS.Matter and Energy in Organisms and Ecosystems  HS.Interdependent Relationships in Ecosystems  HS.Inheritance and Variation of Traits  HS.Natural Selection and Evolution | HS.History of Earth  HS.Earth's Systems  HS.Weather and Climate  HS.Human Sustainability |

# **Development of the D86 Science Program**

#### **Development of the D86 Science Program**

As a result of the alignment focus of D86 Strategic Plan Goal 1, the Science Program Team met to decide upon an aligned science program during the spring of 2019.

This team, consisting of teachers and administrators from both schools, considered various sequences, the D86 Strategic Plan, the NGSS, and other goals determined by the Science Program Team.

Physics: Physics of the Universe and Honors Physics: Physics of the Universe welcomed their first cohort of students in the 2020-2021 school year at both high schools. As we welcome the second cohort of students this fall, our original cohort will move into Chemistry: Chemistry of Earth Systems or Honors Chemistry: Chemistry of Earth Systems.

#### Structure of the D86 Curriculum Alignment Process

#### **Development Teams**

Content Area Teachers, AP Teachers, Earth Science Teachers, SPED Teachers, Department Chairs

#### **D86 Strategic Plan**

Community Members, Parents, Students, Board Members, Administrators, Department Chairs, Teachers, Consultants

#### **Writing Teams**

Content Area Teachers, Earth Science Teachers, Department Chairs

### <u>D86 Science</u> <u>Program</u> Team

Teachers from diverse content areas,
Department Chairs,
Administrators

#### D86 Science Program & Curricular Teams

#### **D86 SCIENCE PROGRAM TEAM**

Dr. Carol Baker Assistant Sup, Academics

Arwen Pokorny Lyp Principal -- South Bill Walsh Principal -- Central

Eric Martzolf Assistant Princ, Instruction -- South
Jessica Hurt Assistant Princ, Instruction -- Central

Dr. Julie Gaubatz Dept Chair/AP Bio -- South

Julie May Dept Chair/AP Chem -- Central

Jim Vetrone Physics/AP Phys -- Central Dr. David Bonner Physics/AP Phys -- South

JR Paige Biology/AP Bio -- Central Randy Brogan GeoPhys, SPED -- South

Dylan Canavan Earth Science -- Central

Tracy McDonald Chemistry/A&P -- South

#### PHYSICS CURRICULUM TEAM (TEACHERS)

Dr. David Bonner Physics/AP Physics -- South

Randy Brogan Physics/SPED -- South

Dylan Canavan Earth Science/Physics -- Central

Tom Jacobson Physics -- South

Kristin Kaduk Physics/APES -- South

Chris McClain Physics -- Central

Alan McCloud Earth Science

#### **CHEMISTRY CURRICULUM TEAM (TEACHERS)**

Jim Ludois Earth Sci/Chem/APES -- Central

Alan McCloud Earth Science

Tracy McDonald Chemistry/A&P -- South

Ryan Mott SPED -- South

Dan Scheldrup Chemistry -- Central

Melissa Scheldrup Chemistry -- Central

Stephen Snider Chemistry/AP Chemistry -- South

Paul Woods Chemistry/AP Chemistry -- Central

#### **BIOLOGY CURRICULUM TEAM (TEACHERS)**

Joel Borowicz Earth Science/Biology -- South

Maria Conyer Biology -- South
Kathy Craig Science -- DHH

Ewa Dybaczewska SPED

Robb Gotlund Biology/AP Biology -- South

Adam Hallihan AP Biology/APES -- South

Michael Jazak Biology/Interventionist

Kimberly Kim Biology -- Central

JR Paige Biology/AP Biology -- Central

Peter Pintz

Biology/AP Biology -- Central

Brigid Walsh

Biology/Chemistry -- Central

Brittany Zust SPED

#### D86 Science Program Goals that guided the alignment process

- 1. Align courses: Fees, textbooks, objectives, grading practices, and assessments.
- 2. Increase student exposure to and interest in core sciences.
  - a. Student experience more core sciences (B,ES,P,C)
  - Students experience more of the NGSS PEs, CCC, and DCIs
  - c. Students enroll in more than the required 2 yrs of science, or the 3 yrs suggested by colleges
- 3. Align courses with college and career opportunities.
  - a. Increase AP enrollment
  - b. Increase the number of students passing AP exams
  - c. Enrollment in capstone course(s)
  - d. Provide junior/senior courses matching high demand careers and student interests

- 4. Create a strategic and coherent science program.
  - a. One course leads to another in terms of knowledge and skills, and in building interest
  - b. Courses align intuitively
  - c. Courses reflect student developmental level
- 5. Maximize teacher expertise.
- 6. Provide informed student choice in coursework junior and senior year.
  - a. Provide options for upperclassman specialization
  - b. Support level changes
- Increase SEL considerations for students and parents.
  - a. Decrease confusion on course selection
  - b. Decrease perceived need for tutoring
  - c. Support student ability to change levels
  - d. Support academic risk-taking
  - e. Courses address various student academic needs

### Final Science Sequences/Programs Analyzed

The D86 Science Program Team explored a large number of possible science course sequences and programs. Once these were preliminarily examined, the team identified nine finalists. All nine of these options were viewed as potentially beneficial for our D86 students. The team then analyzed which of these nine options would have the most potential to meet the D86 Science Program goals. Below is the list of the nine options that were further investigated:

- 1. Semester courses aligned by semester (specified fall and spring courses)
- 2. Semester courses aligned by year (flexible fall and spring courses)
- 3. Integrated ESS-PCB (Earth and Space Science integrated Physics-Chemistry-Biology)
- 4. Integrated ESS-BCP (Earth and Space Science integrated Biology-Chemistry-Physics)
- 5. Multiple Sequences/Pathways (two or three sequence paths, similar to New Trier)
- 6. Traditional Biology-Chemistry-Physics
- 7. Open-Enrollment (similar to HCHS)
- 8. PCB (similar to HSHS)
- 9. Designer model (four tracks, two levels each, two options within each track)

Based on the team's evaluation of each of the sequences against the program goals, the integrated ESS-PCB sequence was chosen.

# **D86 Science Program**

| FRESHMAN                         | SOPHOMORE                                                    | JUNIOR                                                                                                                                                    | SENIOR                                                                                          |
|----------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Physics: Physics in the Universe | Chemistry:<br>Chemistry of Earth Systems                     | <b>Biology</b> :<br>Biology of the Living Earth                                                                                                           |                                                                                                 |
| OR                               | OR                                                           | OR                                                                                                                                                        | <u>Capstones:</u> Anatomy & Physiology Earth Science                                            |
| Physics Honors:                  | Chemistry Honors:                                            | Advanced Placement                                                                                                                                        |                                                                                                 |
| Physics in the Universe          | Chemistry of Earth Systems                                   | Biology                                                                                                                                                   | Advanced Placement:                                                                             |
|                                  | Can be concurrent:  AP Physics C  AP Physics C-M  AP Seminar | Can be concurrent: Anatomy & Physiology Earth Science (capstone) AP Chemistry AP Environmental Science AP Physics C AP Physics C-M AP Research AP Seminar | AP Biology AP Chemistry AP Environmental Sci AP Physics C AP Physics C-M AP Research AP Seminar |

# **Program Updates and Future Work**

### **D86 Science Program Implementation Timeline**

|                            | Physics<br>PITU | Physics<br>Honors<br>PITU | Chemistry<br>COES | Chemistry<br>Honors<br>COES | AP<br>Chem | Biology<br>BOTLE | AP<br>Biology | AP<br>Physics<br>C & C-M | Anatomy & Physiology | Earth<br>Science<br>Capstone | APES           |
|----------------------------|-----------------|---------------------------|-------------------|-----------------------------|------------|------------------|---------------|--------------------------|----------------------|------------------------------|----------------|
| Partial CHS implementation | Fall 2020       | Fall 2020                 | Fall 2021         | Fall 2021                   | NA         | Fall 2022        | NA            | NA                       | NA                   | NA                           | NA             |
| Full CHS implementation    | Fall 2022       | Fall 2022                 | Fall 2023         | Fall 2023                   | Fall 2021  | Fall 2024        | Fall 2022     | Fall 2022                | Fall 2022            | Fall 2023                    | Fall 2023      |
| Full SHS implementation    | Fall 2020       | Fall 2020                 | Fall 2021         | Fall 2021                   | Fall 2021  | Fall 2022        | Fall 2022     | Fall 2022                | Fall 2022            | Fall 2023                    | Fall 2023      |
| Sequence of Units Aligned  | Complete        | Complete                  | Complete          | Complete                    | Complete   | In progress      | In progress   | Not started              | Not started          | Not started                  | Not<br>started |
| Unit Objectives Aligned    | Complete        | Complete                  | Complete          | Complete                    | Complete   | In progress      | In progress   | Not started              | Not started          | Not started                  | Not<br>started |
| Textbook determined        | Complete        | Complete                  | Complete          | Complete                    | Complete   | In progress      | Complete      | Complete                 | Complete             | Not started                  | Complete       |
| Course fee                 | \$10            | \$10                      | \$10              | \$10                        | \$10       | \$10             | \$10          | \$10                     | \$10                 | \$10                         | \$10           |

#### **D86 Science & Next Generation Science Standards - Example**

| NGSS PE   | Performance Expectation                                                                                                                                                                                  | PITU &<br>PITU H | COES & | BOTLE |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-------|
| HS-PS1-6  | Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.                                                             |                  | х      |       |
| HS-PS3-1  | Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. | х                | х      |       |
| HS-LS2-4  | Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.                                                                         |                  |        | х     |
| HS-LS2-5  | Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.                                  |                  |        | х     |
| HS-ESS1-1 | Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy in the form of radiation.                                    |                  | х      |       |
| HS-ESS1-2 | Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.                                  | х                | х      |       |
| HS-ESS1-3 | Communicate scientific ideas about the way stars, over their life cycle, produce elements.                                                                                                               |                  | х      |       |

#### **DRAFT: Content and Skills Vertical Alignment - Example**

|                                  |                      | Physics<br>Physics Honors                                                                                                                                                                                                                                                                                                                                  | Chemistry Chemistry Honors                                                                                                                                                                                                                                                                                            | Biology<br>AP Biology   |
|----------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                  | science<br>Practices | Collecting quality data Organizing, analyzing, interpreting data Using a graph to make predictions Designing, constructing and carrying out experiments Creating, interpreting, examining graphs Developing and using models Using mathematical and computational thinking Working with quantitative data                                                  | Collecting quality data Organizing, analyzing, interpreting data Using a graph to make predictions Designing, constructing and carrying out experiments Creating, interpreting, examining graphs Developing and using models Using mathematical and computational thinking Working with quantitative/qualitative data | Writing Team at<br>Work |
| Math/<br>Graphing/<br>Statistics |                      | Apply mathematical and computational thinking to datasets Identifying mathematical and graphical trends IV/DV; Line of best fit Uncertainty (quantity/quality of data sets) Use spreadsheets to graph data sets Unit conversions Manipulating algebraic equations Sine, cosine and tangent Systems of equations Function identification (linear/quadratic) | Unit conversions (moles, grams) Proportions/Dimensional Analysis Unit conversations Identifying mathematical and graphical trends Manipulating algebraic equations                                                                                                                                                    | Writing Team at<br>Work |

# Vertical Alignment Categories:

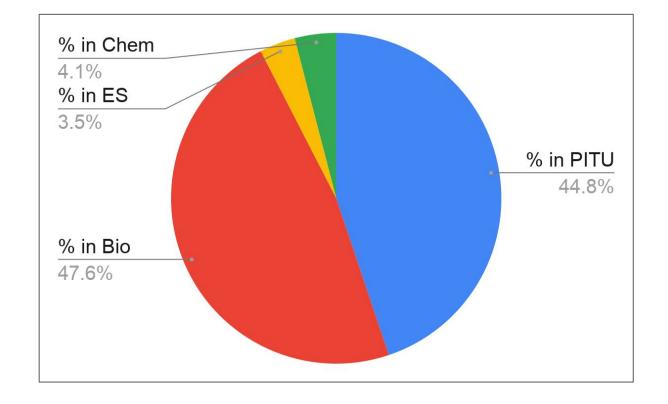
- Science Practices
- Math/ Graphing/
   Statistics
- Earth Science
- Energy
- Motion/Movement
- Waves
- Bonds & Intermolecular Attractions
- Forces & Momentum
- Chemical Reactions
- Thermodynamics

#### **Physics**: Physics in the Universe (PITU)

The D86 Physics and Physics Honors courses for freshmen were implemented partially at CHS and fully at SHS in the Fall of 2020, with full implementation to occur at CHS in 2022.

The D86 Physics: The Physics in the Universe Teaching Team worked together this year, sharing and refining lessons, labs, remote teaching ideas, and assessments. Curriculum refinements based on experiences this year will be made during the summer. Three more CHS teachers will be added to the teaching team for 2021-2022.

- Approximately 33% of CHS freshmen are enrolled in Physics/ Physics Honors in 2020-2021.
- Approximately 45% of CHS freshmen have enrolled for Physics/Physics Honors for 2021-2022.


All SHS freshmen are enrolled in Physics or Physics Honors for 2020-2021 and 2021-2022.

#### **Incoming Freshman Enrollment for 2021-2022 at CHS**

| CHS Freshmen<br>Enrollment<br>2021-2022 |     |  |  |
|-----------------------------------------|-----|--|--|
| Biology                                 | 258 |  |  |

243

**Physics** 



#### **Physics Course Descriptions (PITU)**

#### PHYSICS: Physics in the Universe

This course covers the skills and content of a first year physics course within the context of the Earth and its place in the Universe. Topics include science practices, waves, Big Bang, motion, plate tectonics, forces, energy, momentum, gravity, orbital motion, and projectiles.

#### PHYSICS HONORS: Physics in the Universe

This course covers similar topics as Physics: Physics in the Universe, but at a deeper level and an accelerated pace. This course requires mastery of Algebra I and strong math critical thinking skills.

### **Physics Course Units (PITU and PITU Honors)**

Course
Sheet for
Physics

| Physics Units                                                 |  |  |
|---------------------------------------------------------------|--|--|
| Science Practices                                             |  |  |
| Constant Velocity                                             |  |  |
| Waves                                                         |  |  |
| Application of Waves: Big Bang                                |  |  |
| Application of Waves:<br>Earth's Interior and Plate Tectonics |  |  |
| Acceleration and Gravity                                      |  |  |
| Forces                                                        |  |  |
| Momentum                                                      |  |  |
| Energy                                                        |  |  |
| Orbital Motion                                                |  |  |
| Application of Orbital Motion:<br>Seasons and Climate         |  |  |

| Physics Honors Units                                  |  |  |
|-------------------------------------------------------|--|--|
| Science Practices                                     |  |  |
| Constant Velocity                                     |  |  |
| Forces & Motion (1-D)                                 |  |  |
| Forces & Motion (2-D)                                 |  |  |
| Circular Motion                                       |  |  |
| Momentum                                              |  |  |
| Waves                                                 |  |  |
| Application of Waves: Big Bang                        |  |  |
| Energy                                                |  |  |
| Circuits + Electromagnetic Energy Production          |  |  |
| Orbital Motion                                        |  |  |
| Application of Orbital Motion:<br>Seasons and Climate |  |  |

Course
Sheet for
Physics
Honors

### **Chemistry:** Chemistry of Earth Systems (COES)

The D86 Chemistry and Chemistry Honors courses for sophomores will be implemented partially at CHS in 2021-2022, serving about 33% of sophomores in the first cohort. This course will be fully implemented at SHS will all sophomores enrolling. Full implementation will begin at CHS in 2023.

The D86 Chemistry of Earth Systems Curriculum Development and Writing teams met last summer and throughout the 2020-2021 school year. These teams have worked to finalize Chemistry and Chemistry Honors units, learning objectives, grading practices, and textbooks. The COES Teaching Team is now meeting to plan the details of their year.

### **Chemistry Course Descriptions (COES)**

#### CHEMISTRY: Chemistry of Earth Systems

This course covers the skills and content of a first-year Chemistry course within the context of Earth Systems. Topics include: Big Bang and the origin of elements, atomic structure, chemical reactions and their role in Earth processes, bonding, chemistry topics applied to environmental issues, stoichiometry, thermodynamics and equilibrium.

#### CHEMISTRY HONORS: Chemistry of Earth Systems

This course covers similar topics as Chemistry: Chemistry of Earth Systems, but at a deeper level and an accelerated pace. This course requires strong math critical thinking skills.

### **Chemistry Course Units (COES and Honors COES)**

Course
Sheet for
Chemistry

Course
Sheet for
Chemistry
Honors

| Big Bang and Nuclear Chemistry |  |
|--------------------------------|--|
| Atomic Structure               |  |
| The Periodic Table             |  |
| Chemical Bonding               |  |
| Chemical Quantities            |  |
| Chemical Reactions             |  |
| Stoichiometry                  |  |
| Copper Unlimited Project       |  |

| Thermochemistry                |
|--------------------------------|
| Gases                          |
| Weather and Climate            |
| Climate Change                 |
| Reaction Rates and Equilibrium |
| Acid-Base Equilibria           |
| Ocean Acidification            |
| Organic Chemistry              |

Honors course has additional learning objectives within units that increase the rigor of the course. In addition, Honors level students will be asked to delve deeper into objectives, to use critical thinking skills that incorporate multiple learning objectives across multiple units, and to apply those skills to novel situations.

#### **Biology**: Biology of the Living Earth (BOTLE)

The D86 Biology course for juniors will be implemented partially at CHS and fully at SHS in the Fall of 2022, with full implementation to occur at CHS in 2024.

The Development team met in the spring of 2021 to begin planning for this aligned course. The Writing Team will meet this summer to continue the work, and then both teams will meet periodically throughout the 2021-2022 school year to prepare for implementation the following year.









# **Work in Progress Recap**

| Physics and Physics Honors (Physics in the Universe)       | Course Alignment completed.                                                             |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                            | First cohort took this course in 2021-2022.                                             |
|                                                            | All D86 freshman will enroll in 2022-2023 school year.                                  |
| Chemistry and Chemistry Honors Chemistry of Earth Systems) | Course Alignment completed.                                                             |
|                                                            | First cohort will take this course in 2021-2022                                         |
| Biology<br>(Biology of the Living Earth)                   | Course Alignment is in progress.                                                        |
|                                                            | Development Team and Writing Team are working this summer and in 2021-2022 school year. |
|                                                            | First cohort will take this course in 2022-2023.                                        |

# **Program Analysis**

Based on D86 Science Program Goals, which were created using the D86 Strategic Plan as a guide.

### **D86 Science Program Goals**

- 1. Align courses: Fees, textbooks, objectives, grading practices, and assessments.
- 2. Increase student exposure to and interest in core sciences.
  - a. Student experience more core sciences (B,ES,P,C)
  - Students experience more of the NGSS PEs, CCC, and DCIs
  - c. Students enroll in more than the required 2 yrs of science, or the 3 yrs suggested by colleges
- 3. Align courses with college and career opportunities.
  - a. Increase AP enrollment
  - b. Increase the number of students passing AP exams
  - c. Enrollment in capstone course(s)
  - d. Provide junior/senior courses matching high demand careers and student interests

- 4. Create a strategic and coherent science program.
  - a. One course leads to another in terms of knowledge and skills, and in building interest
  - b. Courses align intuitively
  - c. Courses reflect student developmental level
- 5. Maximize teacher expertise.
- 6. Provide informed student choice in coursework junior and senior year.
  - a. Provide options for upperclassman specialization
  - b. Support level changes
- 7. Increase SEL considerations for students and parents.
  - a. Decrease confusion on course selection
  - b. Decrease perceived need for tutoring
  - c. Support student ability to change levels
  - d. Support academic risk-taking
  - e. Courses address various student academic needs

# **D86 Science Goal 1 KPIs -- Program Analysis**

| <u>Goal</u>      |  | Key Performance Indicators                                                                                                                                                         |  |
|------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Align<br>Courses |  | <ol> <li>Monitor percentage of course fees and textbooks aligned.</li> <li>Determine number of courses with aligned units and objectives compared to the total courses.</li> </ol> |  |

### 1. Fees and Texts

| Fall 2020   | D86 Science fees aligned                   | 100% Completed |
|-------------|--------------------------------------------|----------------|
| Spring 2021 | D86 Science Program text materials aligned | 82% Completed  |
| Fall 2023   | D86 Science Program text materials aligned | 100% Projected |

### 2. Course Alignment

| Fall 2021 | Physics, Physics Honors, Chemistry, Chemistry Honors, AP Chem | 42% Completed  |
|-----------|---------------------------------------------------------------|----------------|
| Fall 2022 | Add Biology (BOTLE), AP Bio, A&P, AP Phys C, AP Phys C-M 75%  | Projected      |
| Fall 2023 | Add Earth Science Capstone, APES                              | 100% Projected |

## **D86 Science Goal 2 KPIs -- Program Analysis**

|                                                                            | <u>Goal</u>                                                                                                                                                                                                                          | Key Performance Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Increase<br>student<br>exposure to<br>and interest<br>in core<br>sciences. | <ul> <li>Student experience more core sciences (B,ES,P,C)</li> <li>Students experience a large percentage of NGSS</li> <li>Students enroll in more than the required 2 yrs of science, or the 3 yrs suggested by colleges</li> </ul> | <ol> <li>Compare # of students who experienced all four disciplines (B,ES,P,C) pre-alignment to the number of students enrolled in PITU, COES, and BOTLE post-alignment.</li> <li>Determine percentage of NGSS PEs covered within D86 science core course sequence.</li> <li>Compare the number of science courses students took by the end of their senior year pre-alignment to the number of science courses taken by the end of senior year post-alignment.</li> <li>Questions from the annual D86 Science Student Survey designed to elicit information to gauge student enjoyment of science and interest in future science pursuits.</li> </ol> |

- 1. Pre-alignment data available, post-alignment data preliminarily available for cohort 1 in 2024
- 2. Physics, Physics H, Chemistry, Chemistry H = Completed 43%, Projected >80% with Bio by 2022
- 3. Pre-alignment data available, post-alignment data preliminarily available for cohort 1 in 2024
- 4. Data collection began Spring 2020, on-going -- preliminary data available in 2024

### **D86 Science Goal 3 KPIs -- Program Analysis**

| <u>Goal</u>                                                     |                                                                                                                                                                                  | Key Performance Indicators                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Align<br>courses with<br>college and<br>career<br>opportunities | <ul> <li>Increase AP enrollment</li> <li>Increase the number of students passing AP exams</li> <li>Increase content knowledge of core sciences as measured by the ISA</li> </ul> | <ol> <li>Compare student enrollment in AP science courses pre- and post-alignment by cohort year.</li> <li>Compare the number of students passing AP exams with a score of 3 or higher pre- and post- alignment by cohort.</li> <li>Compare cohort scores on ISA using pre- and post-alignment data. (ISA cancelled in 2020)</li> </ol> |  |

- 1. Pre-alignment data available, post-alignment data preliminarily available for cohort 1 in 2024
- 2. Pre-alignment data available, post-alignment data preliminarily available for cohort 1 in 2023/2024
- 3. Pre-alignment data available, post-alignment data preliminarily available for cohort 1 in 2023

# **D86 Science Goal 4 KPIs -- Program Analysis**

| <u>Goal</u>                                      |                                                                                          | Key Performance Indicator                                                                                                                                                                                                    |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Create a strategic and coherent science program. | - One course leads to another in terms of knowledge and skills, and in building interest | <ol> <li>Demonstrate strands of progression in content and skills via<br/>an alignment grid from freshman to sophomore to junior<br/>year once the curriculum for these courses is finalized and<br/>established.</li> </ol> |  |

1. Analysis of alignment began in Spring 2021 and will be completed in Fall 2022.

## **D86 Science Goal 5 KPIs -- Program Analysis**

| <u>Goal</u>                 |                                                                                                                                                                                                                                                                      | Key Performance Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Maximize teacher expertise. | <ul> <li>Utilize content area backgrounds of department teachers in both the development and teaching of the courses</li> <li>Provide teachers the opportunity to develop their expertise through collaboration, professional development, and experience</li> </ul> | <ol> <li>Analyze curriculum team composition to determine if teacher expertise represents the core content found within each course.</li> <li>Analyze teaching team composition and teacher schedules to determine scope of teacher availability for collaboration.</li> <li>Analyze teaching team composition over time to ensure experience within each course team.</li> <li>Compile professional development sessions attended by content area teachers/teams and create a gap analysis.</li> </ol> |  |

- Physics, Chemistry, and Biology teams all contain(ed) content area teachers, Earth science teachers, and special services teachers at the Development and/or Writing Team levels.
- 2. All members of the teaching teams are/have been available for collaboration.
- 3. Ongoing.
- 4. Ongoing. Pandemic interference currently.

## **D86 Science Goal 6 KPIs -- Program Analysis**

| <u>Goal</u>                                                           |                                                    | Key Performance Indicators                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Provide informed student choice in coursework junior and senior year. | - Provide options for upperclassman specialization | <ol> <li>Compile the number of courses available to juniors and seniors outside of core courses.</li> <li>Analyze the above to ensure that students' various interest and skill levels are addressed.</li> </ol> |  |

### 1&2. D86 junior/senior non-core courses:

| a. | AP Biology               | 2-sem college credit, science/research/medicine                 |
|----|--------------------------|-----------------------------------------------------------------|
| b. | AP Chemistry             | 2-sem college credit, science/research/medicine/engineering     |
| C. | AP Environmental Science | 1-sem college credit, research/environmental/political/business |
| d. | AP Physics C             | 2 sem college credit, science/research/engineering              |
| e. | AP Physics C-M           | 1 sem college credit, science/research/engineering              |
| f. | Anatomy & Physiology     | high school credit, medicine                                    |
| g. | Earth Science Capstone   | high school credit, environmental/political/business            |
| h. | AP Seminar/AP Research   | 2-sem college credit, science/research/political/humanities     |

## **D86 Science Goal 7 KPIs -- Program Analysis**

| <u>Goal</u>                                           |                                                                                                                                                                       | Key Performance Indicators                                                                                                                                                                                                                                                                                                |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Increase SEL considerations for students and parents. | <ul> <li>Decrease confusion on course selection</li> <li>Decrease perceived need for tutoring</li> <li>Support academic risk-taking (diagonal progression)</li> </ul> | <ol> <li>Analyze course choices and prerequisites for clarity.</li> <li>Compare student survey responses to questions on science course difficulty and perceived need for tutoring pre- and post- alignment.</li> <li>Compare the number of students who moved from regular to Honors pre- and post-alignment.</li> </ol> |  |

- 1. Ongoing -- Requires the D86 Math Program to be implemented due to science's use of math within the D86 Science curriculum.
- 2. Data collection began Spring 2020, on-going -- preliminary data available in 2024
- 3. Data collection will begin in Fall 2021 and will be preliminarily available 2022.

## Thank you.

#### **D86 SCIENCE PROGRAM TEAM**

Dr. Carol Baker Assistant Sup, Academics

Arwen Pokorny Lyp Principal -- South
Bill Walsh Principal -- Central

Eric Martzolf Assistant Princ, Instruction -- South
Jessica Hurt Assistant Princ, Instruction -- Central

Dr. Julie Gaubatz

Dept Chair/AP Bio -- South

Julie May

Dept Chair/AP Chem -- Central

Jim Vetrone

Physics/AP Phys -- Central

Dr. David Bonner Physics/AP Phys -- South
JR Paige Biology/AP Bio -- Central

Randy Brogan GeoPhys, SPED -- South Dylan Canavan Earth Science --Central

Tracy McDonald Chemistry/A&P -- South

### PHYSICS CURRICULUM TEAM (TEACHERS)

Dr. David Bonner Physics/AP Physics -- South

Randy Brogan Physics/SPED -- South

Dylan Canavan Earth Science/Physics -- Central

Tom Jacobson Physics -- South

Kristin Kaduk Physics/APES -- South

Chris McClain Physics/AP Physics -- Central

#### **CHEMISTRY CURRICULUM TEAM (TEACHERS)**

Jim Ludois Earth Sci/Chem/APES -- Central

Tracy McDonald Chemistry/A&P -- South

Ryan Mott SPED -- South

Dan Scheldrup Chemistry -- Central

Melissa Scheldrup Chemistry -- Central

Stephen Snider Chemistry/AP Chemistry -- South
Paul Woods Chemistry/AP Chemistry -- Central

#### **BIOLOGY CURRICULUM TEAM (TEACHERS)**

Joel Borowicz Earth Science/Biology -- South

Maria Conyer Biology -- South
Kathy Craig Science -- DHH

Robb Gotlund Biology/AP Biology -- South

Adam Hallihan AP Biology/APES -- South

JR Paige Biology/AP Biology -- Central

Peter Pintz Biology/AP Biology -- Central

Brigid Walsh Biology/Chemistry -- Central

Brittany Zust SPED

Michael Jazak Biology/Interventionist

Ewa Dybaczewska SPED

Kimberly Kim Biology -- Central

## **Supporting Information**

(Ancillary Slides)



### The PCB sequence is not unique: Examples of PCB Schools in Illinois

### **US News and World Report Illinois Ranking**

| Walter Payton College Prep        | PCB only         | #1  |
|-----------------------------------|------------------|-----|
| Northside College Prep            | PCB only         | #2  |
| Jones College Prep                | PCB only         | #3  |
| Lindblom Math and Science Academy | PCB only         | #9  |
| Glenbrook North                   | PCB (high track) | #12 |
| New Trier                         | PCB (high track) | #13 |
| <u>Deerfield</u>                  | PBC (intg ESS)   | #14 |
| Glenbrook South                   | PCB (high track) | #17 |
| Proviso Math and Science Academy  | PCB only         | #20 |

### Other IL Schools Offering a PCB Sequence

| Illinois Science & Mathematics Academy (ISMA) | PCB (by semester) |
|-----------------------------------------------|-------------------|
| Latin School of Chicago                       | PCB only          |
| Lakes High School                             | PCB only          |
| Argo High School                              | PCB only          |
| Antioch High School                           | PCB only          |
| Hinsdale South High School                    | PCB only          |
| Tinley Park High School                       | PCB only          |
| Bremen High School                            | PCB only          |
| Huntley High School                           | PCB only          |
| Loyola Academy (adopted in 2018)              | PCB only          |
| Oak Forest High School                        | PCB only          |
| Hillcrest High School                         | PCB only          |
|                                               |                   |

## Research supporting a PCB sequencing, 1 - Examples

| Bouma, 2013   | Cohort study. N=571. The PCB program had a significant impact on <b>SAT math scores</b> in the second cohort at MRHS. Statistically adjusted, the SAT math means for PCB students were <b>21.4 points higher</b> than their non-PCB counterparts when controlling for prior math achievement, socioeconomic status, and ethnicity/race.                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glasser, 2012 | Cohort study. Students taking the freshman physics showed positive effects on their <b>mathematical performance on standardized tests.</b>                                                                                                                                                                                                                                                              |
| Pasero, 2008  | Quasi-experimental study, self-selection into either the BCP or PCB sequence. N=185. <b>Gain scores</b> between the EXPLORE and PLAN were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. |
| Gaubatz, 2013 | Cohort study. N by cohort = 7. The modified-PCB program transition was associated with increases in students' honors and Advanced Placement (AP) course enrollments, AP examination scores, understanding of the Nature of Science and experimentation, and self-reported affect toward themselves as learners and toward science in general.                                                           |
| Bouma, 2008   | Natural/quasi-experimental study. N=168 The analysis indicates that the freshmen scored as well as their senior counterparts on the California Standards Test in Physics and on par with typical high school scores on the Force Concept Inventory.                                                                                                                                                     |

48

## Research supporting a PCB sequencing, 2 - Examples

| Burgess, 2019            | Quasi-experimental study. N= 1100. The transition to a PCB sequence resulted in immediate, rapid, statistically significant, large <b>increases in every ACT section</b> with scores rising during the transition and sustained for four years after the transition to the new sequence of science courses.                                                                                                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burgess, 2013            | Quasi-experimental study. N by cohort = 10. <b>AP Science course enrollment increased 398%</b> when comparing the four years prior to the change in sequence to the four years after the change in sequence. <b>AP Science Exam performance displayed a 259% increase</b> when comparing the four years prior to the change with the three years after the change in science course sequence.                                                                                          |
| JK, 2012<br>Popkin, 2009 | Two summaries of <b>why physics first program fail</b> : Lack of teacher training, implemented in a top-down fashion, unsupportive community, easier to implement in smaller, independent, private, or magnet schools than public schools ("in the public school system, inertia rules"), in San Diego, 20 of the district's 27 high schools <i>continue to offer physics to at least some ninth-graders</i> .                                                                         |
| Lovell, 2010             | Quasi-experimental. N by cohort = 15. Impact of freshman physics on the involvement and performance of girls. Of those students who took biology first before the new program was initiated, only 24% graduated with a physics course on their transcript and only 43% took more than the required three years of science. Of the students who took an introductory physics course in ninth grade, 27% went on to take the advanced physics course and 74% took four years of science. |

Physics professors from Harvard, MIT, University of Massachusetts, and University of Chicago explaining the benefits of Freshman Physics.

Student footage taken from Northside College Prep in Chicago and the Illinois Math and Science Academy in Aurora, IL.

